Highly organized but pliant active site of DNA polymerase beta: compensatory mechanisms in mutant enzymes revealed by dynamics simulations and energy analyses.

نویسندگان

  • Linjing Yang
  • William A Beard
  • Samuel H Wilson
  • Suse Broyde
  • Tamar Schlick
چکیده

To link conformational transitions noted for DNA polymerases with kinetic results describing catalytic efficiency and fidelity, we investigate the role of key DNA polymerase beta residues on subdomain motion through simulations of five single-residue mutants: Arg-283-Ala, Tyr-271-Ala, Asp-276-Val, Arg-258-Lys, and Arg-258-Ala. Since a movement toward a closed state was only observed for R258A, we suggest that Arg(258) is crucial in modulating motion preceding chemistry. Analyses of protein/DNA interactions in the mutant active site indicate distinctive hydrogen bonding and van der Waals patterns arising from compensatory structural adjustments. By comparing closed mutant complexes with the wild-type enzyme, we interpret experimentally derived nucleotide binding affinities in molecular terms: R283A (decreased), Y271A (increased), D276V (increased), and R258A (decreased). Thus, compensatory interactions (e.g., in Y271A with adjacent residues Phe(272), Asn(279), and Arg(283)) increase the overall binding affinity for the incoming nucleotide although direct interactions may decrease. Together with energetic analyses, we predict that R258G might increase the rate of nucleotide insertion and maintain enzyme fidelity as R258A; D276L might increase the nucleotide binding affinity more than D276V; and R283A/K280A might decrease the nucleotide binding affinity and increase misinsertion more than R283A. The combined observations regarding key roles of specific residues (e.g., Arg(258)) and compensatory interactions echo the dual nature of polymerase active site, namely versatility (to accommodate various basepairs) and specificity (for preserving fidelity) and underscore an organized but pliant active site essential to enzyme function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local deformations revealed by dynamics simulations of DNA polymerase Beta with DNA mismatches at the primer terminus.

Nanosecond dynamics simulations for DNA polymerase beta (pol beta)/DNA complexes with three mismatched base-pairs, namely GG, CA, or CC (primer/template) at the DNA polymerase active site, are performed to investigate the mechanism of polymerase opening and how the mispairs may affect the DNA extension step; these trajectories are compared to the behavior of a pol beta/DNA complex with the corr...

متن کامل

The effect of oxidatively damaged DNA on the active site pre-organization during nucleotide incorporation in a high fidelity polymerase from <em>Bacillus stearothermophilus</em>

We study the effect of the oxidative lesion 8-oxoguanine (8oxoG) on the pre-organization of the active site for DNA replication in the closed (active) state of the Bacillus Fragment (BF), a Klenow analog from Bacillus stearothermophilus. Our molecular dynamics and free energy simulations of explicitly solvated model ternary complexes of BF bound to correct dCTP/incorrect dATP opposite guanine (...

متن کامل

Effect of oxidatively damaged DNA on the active site preorganization during nucleotide incorporation in a high fidelity polymerase from <em>Bacillus stearothermophilus</em>

We study the effect of the oxidative lesion 8-oxoguanine (8oxoG) on the preorganization of the active site for DNA replication in the closed (active) state of the Bacillus fragment (BF), a Klenow analog from Bacillus stearothermophilus. Our molecular dynamics and free energy simulations of explicitly solvated model ternary complexes of BF bound to correct dCTP/incorrect dATP opposite guanine (G...

متن کامل

Effect of oxidatively damaged DNA on the active site preorganization during nucleotide incorporation in a high fidelity polymerase from Bacillus stearothermophilus.

We study the effect of the oxidative lesion 8-oxoguanine (8oxoG) on the preorganization of the active site for DNA replication in the closed (active) state of the Bacillus fragment (BF), a Klenow analog from Bacillus stearothermophilus. Our molecular dynamics and free energy simulations of explicitly solvated model ternary complexes of BF bound to correct dCTP/incorrect dATP opposite guanine (G...

متن کامل

Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.

DNA polymerase X (pol X) from the African swine fever virus is a 174-amino-acid repair polymerase that likely participates in a viral base excision repair mechanism, characterized by low fidelity. Surprisingly, pol X's insertion rate of the G*G mispair is comparable to that of the four Watson-Crick base pairs. This behavior is in contrast with another X-family polymerase, DNA polymerase beta (p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 86 6  شماره 

صفحات  -

تاریخ انتشار 2004